Package index
-
cdf()
- Evaluate the cumulative distribution function of a probability distribution
-
random()
simulate(<distribution>)
- Draw a random sample from a probability distribution
-
variance()
skewness()
kurtosis()
- Compute the moments of a probability distribution
-
support()
- Return the support of a distribution
-
is_discrete()
is_continuous()
- Determine whether a distribution is discrete or continuous
-
suff_stat()
- Compute the sufficient statistics of a distribution from data
-
fit_mle()
- Fit a distribution to data
-
is_distribution()
- Is an object a distribution?
-
prodist()
- Extracting fitted or predicted probability distributions from models
-
simulate(<default>)
- Simulate responses from fitted model objects
-
apply_dpqr()
make_support()
make_positive_integer()
- Utilities for
distributions3
objects
-
log_likelihood()
likelihood()
- Compute the (log-)likelihood of a probability distribution given data
-
FIFA2018
- Goals scored in all 2018 FIFA World Cup matches
-
plot(<distribution>)
- Plot the p.m.f, p.d.f or c.d.f. of a univariate distribution
-
plot_cdf()
- Plot the CDF of a distribution
-
plot_pdf()
- Plot the PDF of a distribution
-
stat_auc()
geom_auc()
- Fill out area under the curve for a plotted PDF
-
Bernoulli()
- Create a Bernoulli distribution
-
cdf(<Bernoulli>)
- Evaluate the cumulative distribution function of a Bernoulli distribution
-
fit_mle(<Bernoulli>)
- Fit a Bernoulli distribution to data
-
pdf(<Bernoulli>)
log_pdf(<Bernoulli>)
- Evaluate the probability mass function of a Bernoulli distribution
-
quantile(<Bernoulli>)
- Determine quantiles of a Bernoulli distribution
-
random(<Bernoulli>)
- Draw a random sample from a Bernoulli distribution
-
suff_stat(<Bernoulli>)
- Compute the sufficient statistics for a Bernoulli distribution from data
-
support(<Bernoulli>)
- Return the support of the Bernoulli distribution
-
Beta()
- Create a Beta distribution
-
cdf(<Beta>)
- Evaluate the cumulative distribution function of a Beta distribution
-
pdf(<Beta>)
log_pdf(<Beta>)
- Evaluate the probability mass function of a Beta distribution
-
quantile(<Beta>)
- Determine quantiles of a Beta distribution
-
random(<Beta>)
- Draw a random sample from a Beta distribution
-
support(<Beta>)
- Return the support of the Beta distribution
-
Binomial()
- Create a Binomial distribution
-
cdf(<Binomial>)
- Evaluate the cumulative distribution function of a Binomial distribution
-
fit_mle(<Binomial>)
- Fit a Binomial distribution to data
-
pdf(<Binomial>)
log_pdf(<Binomial>)
- Evaluate the probability mass function of a Binomial distribution
-
quantile(<Binomial>)
- Determine quantiles of a Binomial distribution
-
random(<Binomial>)
- Draw a random sample from a Binomial distribution
-
suff_stat(<Binomial>)
- Compute the sufficient statistics for the Binomial distribution from data
-
support(<Binomial>)
- Return the support of the Binomial distribution
-
Categorical()
- Create a Categorical distribution
-
cdf(<Categorical>)
- Evaluate the cumulative distribution function of a Categorical distribution
-
pdf(<Categorical>)
log_pdf(<Categorical>)
- Evaluate the probability mass function of a Categorical discrete distribution
-
quantile(<Categorical>)
- Determine quantiles of a Categorical discrete distribution
-
random(<Categorical>)
- Draw a random sample from a Categorical distribution
-
Cauchy()
- Create a Cauchy distribution
-
cdf(<Cauchy>)
- Evaluate the cumulative distribution function of a Cauchy distribution
-
pdf(<Cauchy>)
log_pdf(<Cauchy>)
- Evaluate the probability mass function of a Cauchy distribution
-
quantile(<Cauchy>)
- Determine quantiles of a Cauchy distribution
-
random(<Cauchy>)
- Draw a random sample from a Cauchy distribution
-
support(<Cauchy>)
- Return the support of the Cauchy distribution
-
ChiSquare()
- Create a Chi-Square distribution
-
cdf(<ChiSquare>)
- Evaluate the cumulative distribution function of a chi square distribution
-
pdf(<ChiSquare>)
log_pdf(<ChiSquare>)
- Evaluate the probability mass function of a chi square distribution
-
quantile(<ChiSquare>)
- Determine quantiles of a chi square distribution
-
random(<ChiSquare>)
- Draw a random sample from a chi square distribution
-
support(<ChiSquare>)
- Return the support of the ChiSquare distribution
-
Erlang()
- Create an Erlang distribution
-
cdf(<Erlang>)
- Evaluate the cumulative distribution function of an Erlang distribution
-
pdf(<Erlang>)
log_pdf(<Erlang>)
- Evaluate the probability mass function of an Erlang distribution
-
quantile(<Erlang>)
- Determine quantiles of an Erlang distribution
-
random(<Erlang>)
- Draw a random sample from an Erlang distribution
-
support(<Erlang>)
- Return the support of the Erlang distribution
-
Exponential()
- Create an Exponential distribution
-
cdf(<Exponential>)
- Evaluate the cumulative distribution function of an Exponential distribution
-
fit_mle(<Exponential>)
- Fit an Exponential distribution to data
-
pdf(<Exponential>)
log_pdf(<Exponential>)
- Evaluate the probability density function of an Exponential distribution
-
quantile(<Exponential>)
- Determine quantiles of an Exponential distribution
-
random(<Exponential>)
- Draw a random sample from an Exponential distribution
-
suff_stat(<Exponential>)
- Compute the sufficient statistics of an Exponential distribution from data
-
support(<Exponential>)
- Return the support of the Exponential distribution
-
FisherF()
- Create an F distribution
-
cdf(<FisherF>)
- Evaluate the cumulative distribution function of an F distribution
-
pdf(<FisherF>)
log_pdf(<FisherF>)
- Evaluate the probability mass function of an F distribution
-
quantile(<FisherF>)
- Determine quantiles of an F distribution
-
random(<FisherF>)
- Draw a random sample from an F distribution
-
support(<FisherF>)
- Return the support of the FisherF distribution
-
Frechet()
- Create a Frechet distribution
-
cdf(<Frechet>)
- Evaluate the cumulative distribution function of a Frechet distribution
-
pdf(<Frechet>)
log_pdf(<Frechet>)
- Evaluate the probability mass function of a Frechet distribution
-
quantile(<Frechet>)
- Determine quantiles of a Frechet distribution
-
random(<Frechet>)
- Draw a random sample from a Frechet distribution
-
support(<Frechet>)
- Return the support of the Frechet distribution
-
GEV()
- Create a Generalised Extreme Value (GEV) distribution
-
cdf(<GEV>)
- Evaluate the cumulative distribution function of a GEV distribution
-
pdf(<GEV>)
log_pdf(<GEV>)
- Evaluate the probability mass function of a GEV distribution
-
quantile(<GEV>)
- Determine quantiles of a GEV distribution
-
random(<GEV>)
- Draw a random sample from a GEV distribution
-
support(<GEV>)
- Return the support of a GEV distribution
-
GP()
- Create a Generalised Pareto (GP) distribution
-
cdf(<GP>)
- Evaluate the cumulative distribution function of a GP distribution
-
pdf(<GP>)
log_pdf(<GP>)
- Evaluate the probability mass function of a GP distribution
-
quantile(<GP>)
- Determine quantiles of a GP distribution
-
random(<GP>)
- Draw a random sample from a GP distribution
-
support(<GP>)
- Return the support of the GP distribution
-
Gamma()
- Create a Gamma distribution
-
cdf(<Gamma>)
- Evaluate the cumulative distribution function of a Gamma distribution
-
fit_mle(<Gamma>)
- Fit a Gamma distribution to data
-
pdf(<Gamma>)
log_pdf(<Gamma>)
- Evaluate the probability mass function of a Gamma distribution
-
quantile(<Gamma>)
- Determine quantiles of a Gamma distribution
-
random(<Gamma>)
- Draw a random sample from a Gamma distribution
-
suff_stat(<Gamma>)
- Compute the sufficient statistics for a Gamma distribution from data
-
support(<Gamma>)
- Return the support of the Gamma distribution
-
Geometric()
- Create a Geometric distribution
-
cdf(<Geometric>)
- Evaluate the cumulative distribution function of a Geometric distribution
-
fit_mle(<Geometric>)
- Fit a Geometric distribution to data
-
pdf(<Geometric>)
log_pdf(<Geometric>)
- Evaluate the probability mass function of a Geometric distribution
-
quantile(<Geometric>)
- Determine quantiles of a Geometric distribution
-
random(<Geometric>)
- Draw a random sample from a Geometric distribution
-
suff_stat(<Geometric>)
- Compute the sufficient statistics for the Geometric distribution from data
-
support(<Geometric>)
- Return the support of the Geometric distribution
-
Gumbel()
- Create a Gumbel distribution
-
cdf(<Gumbel>)
- Evaluate the cumulative distribution function of a Gumbel distribution
-
pdf(<Gumbel>)
log_pdf(<Gumbel>)
- Evaluate the probability mass function of a Gumbel distribution
-
quantile(<Gumbel>)
- Determine quantiles of a Gumbel distribution
-
random(<Gumbel>)
- Draw a random sample from a Gumbel distribution
-
support(<Gumbel>)
- Return the support of the Gumbel distribution
-
dhnbinom()
phnbinom()
qhnbinom()
rhnbinom()
- The hurdle negative binomial distribution
-
HurdleNegativeBinomial()
- Create a hurdle negative binomial distribution
-
cdf(<HurdleNegativeBinomial>)
- Evaluate the cumulative distribution function of a hurdle negative binomial distribution
-
pdf(<HurdleNegativeBinomial>)
log_pdf(<HurdleNegativeBinomial>)
- Evaluate the probability mass function of a hurdle negative binomial distribution
-
quantile(<HurdleNegativeBinomial>)
- Determine quantiles of a hurdle negative binomial distribution
-
random(<HurdleNegativeBinomial>)
- Draw a random sample from a hurdle negative binomial distribution
-
support(<HurdleNegativeBinomial>)
- Return the support of the hurdle negative binomial distribution
-
HurdlePoisson()
- Create a hurdle Poisson distribution
-
cdf(<HurdlePoisson>)
- Evaluate the cumulative distribution function of a hurdle Poisson distribution
-
pdf(<HurdlePoisson>)
log_pdf(<HurdlePoisson>)
- Evaluate the probability mass function of a hurdle Poisson distribution
-
quantile(<HurdlePoisson>)
- Determine quantiles of a hurdle Poisson distribution
-
random(<HurdlePoisson>)
- Draw a random sample from a hurdle Poisson distribution
-
support(<HurdlePoisson>)
- Return the support of the hurdle Poisson distribution
-
HyperGeometric()
- Create a HyperGeometric distribution
-
cdf(<HyperGeometric>)
- Evaluate the cumulative distribution function of a HyperGeometric distribution
-
pdf(<HyperGeometric>)
log_pdf(<HyperGeometric>)
- Evaluate the probability mass function of a HyperGeometric distribution
-
quantile(<HyperGeometric>)
- Determine quantiles of a HyperGeometric distribution
-
random(<HyperGeometric>)
- Draw a random sample from a HyperGeometric distribution
-
support(<HyperGeometric>)
- Return the support of the HyperGeometric distribution
-
LogNormal()
- Create a LogNormal distribution
-
cdf(<LogNormal>)
- Evaluate the cumulative distribution function of a LogNormal distribution
-
fit_mle(<LogNormal>)
- Fit a Log Normal distribution to data
-
pdf(<LogNormal>)
log_pdf(<LogNormal>)
- Evaluate the probability mass function of a LogNormal distribution
-
quantile(<LogNormal>)
- Determine quantiles of a LogNormal distribution
-
random(<LogNormal>)
- Draw a random sample from a LogNormal distribution
-
suff_stat(<LogNormal>)
- Compute the sufficient statistics for a Log-normal distribution from data
-
support(<LogNormal>)
- Return the support of the LogNormal distribution
-
Logistic()
- Create a Logistic distribution
-
cdf(<Logistic>)
- Evaluate the cumulative distribution function of a Logistic distribution
-
pdf(<Logistic>)
log_pdf(<Logistic>)
- Evaluate the probability mass function of a Logistic distribution
-
quantile(<Logistic>)
- Determine quantiles of a Logistic distribution
-
random(<Logistic>)
- Draw a random sample from a Logistic distribution
-
support(<Logistic>)
- Return the support of the Logistic distribution
-
Multinomial()
- Create a Multinomial distribution
-
pdf(<Multinomial>)
log_pdf(<Multinomial>)
- Evaluate the probability mass function of a Multinomial distribution
-
random(<Multinomial>)
- Draw a random sample from a Multinomial distribution
-
NegativeBinomial()
- Create a negative binomial distribution
-
cdf(<NegativeBinomial>)
- Evaluate the cumulative distribution function of a negative binomial distribution
-
pdf(<NegativeBinomial>)
log_pdf(<NegativeBinomial>)
- Evaluate the probability mass function of a NegativeBinomial distribution
-
quantile(<NegativeBinomial>)
- Determine quantiles of a NegativeBinomial distribution
-
random(<NegativeBinomial>)
- Draw a random sample from a negative binomial distribution
-
support(<NegativeBinomial>)
- Return the support of the NegativeBinomial distribution
-
Normal()
- Create a Normal distribution
-
cdf(<Normal>)
- Evaluate the cumulative distribution function of a Normal distribution
-
fit_mle(<Normal>)
- Fit a Normal distribution to data
-
pdf(<Normal>)
log_pdf(<Normal>)
- Evaluate the probability mass function of a Normal distribution
-
quantile(<Normal>)
- Determine quantiles of a Normal distribution
-
random(<Normal>)
- Draw a random sample from a Normal distribution
-
suff_stat(<Normal>)
- Compute the sufficient statistics for a Normal distribution from data
-
support(<Normal>)
- Return the support of the Normal distribution
-
Poisson()
- Create a Poisson distribution
-
cdf(<Poisson>)
- Evaluate the cumulative distribution function of a Poisson distribution
-
fit_mle(<Poisson>)
- Fit an Poisson distribution to data
-
pdf(<Poisson>)
log_pdf(<Poisson>)
- Evaluate the probability mass function of a Poisson distribution
-
quantile(<Poisson>)
- Determine quantiles of a Poisson distribution
-
random(<Poisson>)
- Draw a random sample from a Poisson distribution
-
suff_stat(<Poisson>)
- Compute the sufficient statistics of an Poisson distribution from data
-
support(<Poisson>)
- Return the support of the Poisson distribution
-
PoissonBinomial()
- Create a Poisson binomial distribution
-
cdf(<PoissonBinomial>)
- Evaluate the cumulative distribution function of a PoissonBinomial distribution
-
pdf(<PoissonBinomial>)
log_pdf(<PoissonBinomial>)
- Evaluate the probability mass function of a PoissonBinomial distribution
-
quantile(<PoissonBinomial>)
- Determine quantiles of a PoissonBinomial distribution
-
random(<PoissonBinomial>)
- Draw a random sample from a PoissonBinomial distribution
-
support(<PoissonBinomial>)
- Return the support of the PoissonBinomial distribution
-
RevWeibull()
- Create a reversed Weibull distribution
-
cdf(<RevWeibull>)
- Evaluate the cumulative distribution function of an RevWeibull distribution
-
pdf(<RevWeibull>)
log_pdf(<RevWeibull>)
- Evaluate the probability mass function of an RevWeibull distribution
-
quantile(<RevWeibull>)
- Determine quantiles of a RevWeibull distribution
-
random(<RevWeibull>)
- Draw a random sample from an RevWeibull distribution
-
support(<RevWeibull>)
- Return the support of the RevWeibull distribution
-
StudentsT()
- Create a Student's T distribution
-
cdf(<StudentsT>)
- Evaluate the cumulative distribution function of a StudentsT distribution
-
pdf(<StudentsT>)
log_pdf(<StudentsT>)
- Evaluate the probability mass function of a StudentsT distribution
-
quantile(<StudentsT>)
- Determine quantiles of a StudentsT distribution
-
random(<StudentsT>)
- Draw a random sample from a StudentsT distribution
-
support(<StudentsT>)
- Return the support of the StudentsT distribution
-
Tukey()
- Create a Tukey distribution
-
cdf(<Tukey>)
- Evaluate the cumulative distribution function of a Tukey distribution
-
quantile(<Tukey>)
- Determine quantiles of a Tukey distribution
-
random(<Tukey>)
- Draw a random sample from a Tukey distribution
-
support(<Tukey>)
- Return the support of the Tukey distribution
-
Uniform()
- Create a Continuous Uniform distribution
-
cdf(<Uniform>)
- Evaluate the cumulative distribution function of a continuous Uniform distribution
-
pdf(<Uniform>)
log_pdf(<Uniform>)
- Evaluate the probability mass function of a continuous Uniform distribution
-
quantile(<Uniform>)
- Determine quantiles of a continuous Uniform distribution
-
random(<Uniform>)
- Draw a random sample from a continuous Uniform distribution
-
support(<Uniform>)
- Return the support of the Uniform distribution
-
Weibull()
- Create a Weibull distribution
-
cdf(<Weibull>)
- Evaluate the cumulative distribution function of a Weibull distribution
-
pdf(<Weibull>)
log_pdf(<Weibull>)
- Evaluate the probability mass function of a Weibull distribution
-
quantile(<Weibull>)
- Determine quantiles of a Weibull distribution
-
random(<Weibull>)
- Draw a random sample from a Weibull distribution
-
support(<Weibull>)
- Return the support of the Weibull distribution
-
dzinbinom()
pzinbinom()
qzinbinom()
rzinbinom()
- The zero-inflated negative binomial distribution
-
ZINegativeBinomial()
- Create a zero-inflated negative binomial distribution
-
cdf(<ZINegativeBinomial>)
- Evaluate the cumulative distribution function of a zero-inflated negative binomial distribution
-
pdf(<ZINegativeBinomial>)
log_pdf(<ZINegativeBinomial>)
- Evaluate the probability mass function of a zero-inflated negative binomial distribution
-
quantile(<ZINegativeBinomial>)
- Determine quantiles of a zero-inflated negative binomial distribution
-
random(<ZINegativeBinomial>)
- Draw a random sample from a zero-inflated negative binomial distribution
-
support(<ZINegativeBinomial>)
- Return the support of the zero-inflated negative binomial distribution
-
ZIPoisson()
- Create a zero-inflated Poisson distribution
-
cdf(<ZIPoisson>)
- Evaluate the cumulative distribution function of a zero-inflated Poisson distribution
-
pdf(<ZIPoisson>)
log_pdf(<ZIPoisson>)
- Evaluate the probability mass function of a zero-inflated Poisson distribution
-
quantile(<ZIPoisson>)
- Determine quantiles of a zero-inflated Poisson distribution
-
random(<ZIPoisson>)
- Draw a random sample from a zero-inflated Poisson distribution
-
support(<ZIPoisson>)
- Return the support of the zero-inflated Poisson distribution
-
dztnbinom()
pztnbinom()
qztnbinom()
rztnbinom()
- The zero-truncated negative binomial distribution
-
ZTNegativeBinomial()
- Create a zero-truncated negative binomial distribution
-
cdf(<ZTNegativeBinomial>)
- Evaluate the cumulative distribution function of a zero-truncated negative binomial distribution
-
pdf(<ZTNegativeBinomial>)
log_pdf(<ZTNegativeBinomial>)
- Evaluate the probability mass function of a zero-truncated negative binomial distribution
-
quantile(<ZTNegativeBinomial>)
- Determine quantiles of a zero-truncated negative binomial distribution
-
random(<ZTNegativeBinomial>)
- Draw a random sample from a zero-truncated negative binomial distribution
-
support(<ZTNegativeBinomial>)
- Return the support of the zero-truncated negative binomial distribution
-
ZTPoisson()
- Create a zero-truncated Poisson distribution
-
cdf(<ZTPoisson>)
- Evaluate the cumulative distribution function of a zero-truncated Poisson distribution
-
pdf(<ZTPoisson>)
log_pdf(<ZTPoisson>)
- Evaluate the probability mass function of a zero-truncated Poisson distribution
-
quantile(<ZTPoisson>)
- Determine quantiles of a zero-truncated Poisson distribution
-
random(<ZTPoisson>)
- Draw a random sample from a zero-truncated Poisson distribution
-
support(<ZTPoisson>)
- Return the support of the zero-truncated Poisson distribution