quantile()
is the inverse of cdf()
.
Usage
# S3 method for class 'Beta'
quantile(x, probs, drop = TRUE, elementwise = NULL, ...)
Arguments
- x
A
Beta
object created by a call toBeta()
.- probs
A vector of probabilities.
- drop
logical. Should the result be simplified to a vector if possible?
- elementwise
logical. Should each distribution in
x
be evaluated at all elements ofprobs
(elementwise = FALSE
, yielding a matrix)? Or, ifx
andprobs
have the same length, should the evaluation be done element by element (elementwise = TRUE
, yielding a vector)? The default ofNULL
means thatelementwise = TRUE
is used if the lengths match and otherwiseelementwise = FALSE
is used.- ...
Arguments to be passed to
qbeta
. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.
Value
In case of a single distribution object, either a numeric
vector of length probs
(if drop = TRUE
, default) or a matrix
with
length(probs)
columns (if drop = FALSE
). In case of a vectorized
distribution object, a matrix with length(probs)
columns containing all
possible combinations.
Examples
set.seed(27)
X <- Beta(1, 2)
X
#> [1] "Beta(alpha = 1, beta = 2)"
random(X, 10)
#> [1] 0.014327255 0.067309943 0.636292291 0.864804440 0.758869543 0.237550867
#> [7] 0.330895959 0.065843704 0.008265406 0.254705779
pdf(X, 0.7)
#> [1] 0.6
log_pdf(X, 0.7)
#> [1] -0.5108256
cdf(X, 0.7)
#> [1] 0.91
quantile(X, 0.7)
#> [1] 0.4522774
mean(X)
#> [1] 0.3333333
variance(X)
#> [1] 0.05555556
skewness(X)
#> [1] 1.131371
kurtosis(X)
#> [1] -0.6
cdf(X, quantile(X, 0.7))
#> [1] 0.7
quantile(X, cdf(X, 0.7))
#> [1] 0.7