Evaluate the probability density function of an Exponential distribution
Source:R/Exponential.R
pdf.Exponential.RdEvaluate the probability density function of an Exponential distribution
Arguments
- d
An
Exponentialobject created by a call toExponential().- x
A vector of elements whose probabilities you would like to determine given the distribution
d.- drop
logical. Should the result be simplified to a vector if possible?
- elementwise
logical. Should each distribution in
dbe evaluated at all elements ofx(elementwise = FALSE, yielding a matrix)? Or, ifdandxhave the same length, should the evaluation be done element by element (elementwise = TRUE, yielding a vector)? The default ofNULLmeans thatelementwise = TRUEis used if the lengths match and otherwiseelementwise = FALSEis used.- ...
Arguments to be passed to
dexp. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.
Value
In case of a single distribution object, either a numeric
vector of length probs (if drop = TRUE, default) or a matrix with
length(x) columns (if drop = FALSE). In case of a vectorized distribution
object, a matrix with length(x) columns containing all possible combinations.
Examples
set.seed(27)
X <- Exponential(5)
X
#> [1] "Exponential(rate = 5)"
mean(X)
#> [1] 0.2
variance(X)
#> [1] 0.04
skewness(X)
#> [1] 2
kurtosis(X)
#> [1] 6
random(X, 10)
#> [1] 0.01161126 0.28730930 1.15993941 0.29660927 0.38431337 0.04643808
#> [7] 0.06969554 0.10900366 0.50608948 0.03759968
pdf(X, 2)
#> [1] 0.0002269996
log_pdf(X, 2)
#> [1] -8.390562
cdf(X, 4)
#> [1] 1
quantile(X, 0.7)
#> [1] 0.2407946
cdf(X, quantile(X, 0.7))
#> [1] 0.7
quantile(X, cdf(X, 7))
#> [1] 6.989008