The Frechet distribution is a special case of the \link{GEV}
distribution,
obtained when the GEV shape parameter \(\xi\) is positive.
It may be referred to as a type II extreme value distribution.
Details
We recommend reading this documentation on https://alexpghayes.github.io/distributions3/, where the math will render with additional detail and much greater clarity.
In the following, let \(X\) be a Frechet random variable with location
parameter location
= \(m\), scale parameter scale
=
\(s\), and shape parameter shape
= \(\alpha\).
A Frechet(\(m, s, \alpha\)) distribution is equivalent to a
\link{GEV}
(\(m + s, s / \alpha, 1 / \alpha\)) distribution.
Support: \((m, \infty)\).
Mean: \(m + s\Gamma(1 - 1/\alpha)\), for \(\alpha > 1\); undefined otherwise.
Median: \(m + s(\ln 2)^{-1/\alpha}\).
Variance: \(s^2 [\Gamma(1 - 2 / \alpha) - \Gamma(1 - 1 / \alpha)^2]\) for \(\alpha > 2\); undefined otherwise.
Probability density function (p.d.f):
$$f(x) = \alpha s ^ {-1} [(x - m) / s] ^ {-(1 + \alpha)}% \exp\{-[(x - m) / s] ^ {-\alpha} \}$$ for \(x > m\). The p.d.f. is 0 for \(x \leq m\).
Cumulative distribution function (c.d.f):
$$F(x) = \exp\{-[(x - m) / s] ^ {-\alpha} \}$$ for \(x > m\). The c.d.f. is 0 for \(x \leq m\).
Examples
set.seed(27)
X <- Frechet(0, 2)
X
#> [1] "Frechet(location = 0, scale = 2, shape = 1)"
random(X, 10)
#> [1] 69.7922625 0.8065071 14.8341823 1.8001889 1.3299308 2.1925530
#> [7] 0.7621402 0.3326917 1.0064977 1.2115825
pdf(X, 0.7)
#> [1] 0.2344189
log_pdf(X, 0.7)
#> [1] -1.450646
cdf(X, 0.7)
#> [1] 0.05743262
quantile(X, 0.7)
#> [1] 5.607347
cdf(X, quantile(X, 0.7))
#> [1] 0.7
quantile(X, cdf(X, 0.7))
#> [1] 0.7