Evaluate the probability mass function of a Cauchy distribution
Arguments
- d
A
Cauchy
object created by a call toCauchy()
.- x
A vector of elements whose probabilities you would like to determine given the distribution
d
.- drop
logical. Should the result be simplified to a vector if possible?
- elementwise
logical. Should each distribution in
d
be evaluated at all elements ofx
(elementwise = FALSE
, yielding a matrix)? Or, ifd
andx
have the same length, should the evaluation be done element by element (elementwise = TRUE
, yielding a vector)? The default ofNULL
means thatelementwise = TRUE
is used if the lengths match and otherwiseelementwise = FALSE
is used.- ...
Arguments to be passed to
dcauchy
. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.
Value
In case of a single distribution object, either a numeric
vector of length probs
(if drop = TRUE
, default) or a matrix
with
length(x)
columns (if drop = FALSE
). In case of a vectorized distribution
object, a matrix with length(x)
columns containing all possible combinations.
Examples
set.seed(27)
X <- Cauchy(10, 0.2)
X
#> [1] "Cauchy(location = 10, scale = 0.2)"
mean(X)
#> [1] NaN
variance(X)
#> [1] NaN
skewness(X)
#> [1] NaN
kurtosis(X)
#> [1] NaN
random(X, 10)
#> [1] 9.982203 10.053876 9.916324 10.336325 10.167877 10.626557 10.046357
#> [8] 10.001540 10.091892 10.137681
pdf(X, 2)
#> [1] 0.0009940971
log_pdf(X, 2)
#> [1] -6.913676
cdf(X, 2)
#> [1] 0.00795609
quantile(X, 0.7)
#> [1] 10.14531
cdf(X, quantile(X, 0.7))
#> [1] 0.7
quantile(X, cdf(X, 7))
#> [1] 7