quantile()
is the inverse of cdf()
.
Usage
# S3 method for class 'Uniform'
quantile(x, probs, drop = TRUE, elementwise = NULL, ...)
Arguments
- x
A
Uniform
object created by a call toUniform()
.- probs
A vector of probabilities.
- drop
logical. Should the result be simplified to a vector if possible?
- elementwise
logical. Should each distribution in
x
be evaluated at all elements ofprobs
(elementwise = FALSE
, yielding a matrix)? Or, ifx
andprobs
have the same length, should the evaluation be done element by element (elementwise = TRUE
, yielding a vector)? The default ofNULL
means thatelementwise = TRUE
is used if the lengths match and otherwiseelementwise = FALSE
is used.- ...
Arguments to be passed to
qunif
. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.
Value
In case of a single distribution object, either a numeric
vector of length probs
(if drop = TRUE
, default) or a matrix
with
length(probs)
columns (if drop = FALSE
). In case of a vectorized
distribution object, a matrix with length(probs)
columns containing all
possible combinations.
Examples
set.seed(27)
X <- Uniform(1, 2)
X
#> [1] "Uniform(a = 1, b = 2)"
random(X, 10)
#> [1] 1.971750 1.083758 1.873870 1.329231 1.222276 1.401648 1.072499 1.002450
#> [9] 1.137094 1.191909
pdf(X, 0.7)
#> [1] 0
log_pdf(X, 0.7)
#> [1] -Inf
cdf(X, 0.7)
#> [1] 0
quantile(X, 0.7)
#> [1] 1.7
cdf(X, quantile(X, 0.7))
#> [1] 0.7
quantile(X, cdf(X, 0.7))
#> [1] 1