Evaluate the probability mass function of a LogNormal distribution
Source:R/LogNormal.R
pdf.LogNormal.Rd
Please see the documentation of LogNormal()
for some properties
of the LogNormal distribution, as well as extensive examples
showing to how calculate p-values and confidence intervals.
Arguments
- d
A
LogNormal
object created by a call toLogNormal()
.- x
A vector of elements whose probabilities you would like to determine given the distribution
d
.- drop
logical. Should the result be simplified to a vector if possible?
- elementwise
logical. Should each distribution in
d
be evaluated at all elements ofx
(elementwise = FALSE
, yielding a matrix)? Or, ifd
andx
have the same length, should the evaluation be done element by element (elementwise = TRUE
, yielding a vector)? The default ofNULL
means thatelementwise = TRUE
is used if the lengths match and otherwiseelementwise = FALSE
is used.- ...
Arguments to be passed to
dlnorm
. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.
Value
In case of a single distribution object, either a numeric
vector of length probs
(if drop = TRUE
, default) or a matrix
with
length(x)
columns (if drop = FALSE
). In case of a vectorized distribution
object, a matrix with length(x)
columns containing all possible combinations.
See also
Other LogNormal distribution:
cdf.LogNormal()
,
fit_mle.LogNormal()
,
quantile.LogNormal()
,
random.LogNormal()
Examples
set.seed(27)
X <- LogNormal(0.3, 2)
X
#> [1] "LogNormal(log_mu = 0.3, log_sigma = 2)"
random(X, 10)
#> [1] 61.21089083 13.32648994 0.29256703 0.07317767 0.15153514 2.43630473
#> [7] 1.36857751 13.66478070 96.47421603 2.17208867
pdf(X, 2)
#> [1] 0.09782712
log_pdf(X, 2)
#> [1] -2.324553
cdf(X, 4)
#> [1] 0.7064858
quantile(X, 0.7)
#> [1] 3.852803