Evaluate the probability mass function of a chi square distribution
Source:R/ChiSquare.R
pdf.ChiSquare.Rd
Evaluate the probability mass function of a chi square distribution
Arguments
- d
A
ChiSquare
object created by a call toChiSquare()
.- x
A vector of elements whose probabilities you would like to determine given the distribution
d
.- drop
logical. Should the result be simplified to a vector if possible?
- elementwise
logical. Should each distribution in
d
be evaluated at all elements ofx
(elementwise = FALSE
, yielding a matrix)? Or, ifd
andx
have the same length, should the evaluation be done element by element (elementwise = TRUE
, yielding a vector)? The default ofNULL
means thatelementwise = TRUE
is used if the lengths match and otherwiseelementwise = FALSE
is used.- ...
Arguments to be passed to
dchisq
. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.
Value
In case of a single distribution object, either a numeric
vector of length probs
(if drop = TRUE
, default) or a matrix
with
length(x)
columns (if drop = FALSE
). In case of a vectorized distribution
object, a matrix with length(x)
columns containing all possible combinations.
Examples
set.seed(27)
X <- ChiSquare(5)
X
#> [1] "ChiSquare(df = 5)"
mean(X)
#> [1] 5
variance(X)
#> [1] 10
skewness(X)
#> [1] 1.264911
kurtosis(X)
#> [1] 2.4
random(X, 10)
#> [1] 11.2129049 7.8935724 2.1298341 5.2084236 5.4563211 3.6636712
#> [7] 10.9823299 0.7858347 4.8748588 1.7938110
pdf(X, 2)
#> [1] 0.1383692
log_pdf(X, 2)
#> [1] -1.97783
cdf(X, 4)
#> [1] 0.450584
quantile(X, 0.7)
#> [1] 6.06443
cdf(X, quantile(X, 0.7))
#> [1] 0.7
quantile(X, cdf(X, 7))
#> [1] 7