Evaluate the cumulative distribution function of a Binomial distribution
Source:R/Binomial.R
cdf.Binomial.Rd
Evaluate the cumulative distribution function of a Binomial distribution
Usage
# S3 method for class 'Binomial'
cdf(d, x, drop = TRUE, elementwise = NULL, ...)
Arguments
- d
A
Binomial
object created by a call toBinomial()
.- x
A vector of elements whose cumulative probabilities you would like to determine given the distribution
d
.- drop
logical. Should the result be simplified to a vector if possible?
- elementwise
logical. Should each distribution in
d
be evaluated at all elements ofx
(elementwise = FALSE
, yielding a matrix)? Or, ifd
andx
have the same length, should the evaluation be done element by element (elementwise = TRUE
, yielding a vector)? The default ofNULL
means thatelementwise = TRUE
is used if the lengths match and otherwiseelementwise = FALSE
is used.- ...
Arguments to be passed to
pbinom
. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.
Value
In case of a single distribution object, either a numeric
vector of length probs
(if drop = TRUE
, default) or a matrix
with
length(x)
columns (if drop = FALSE
). In case of a vectorized distribution
object, a matrix with length(x)
columns containing all possible combinations.
Examples
set.seed(27)
X <- Binomial(10, 0.2)
X
#> [1] "Binomial(size = 10, p = 0.2)"
mean(X)
#> [1] 2
variance(X)
#> [1] 1.6
skewness(X)
#> [1] 0.4743416
kurtosis(X)
#> [1] 0.025
random(X, 10)
#> [1] 5 0 3 1 1 2 0 0 1 1
pdf(X, 2L)
#> [1] 0.3019899
log_pdf(X, 2L)
#> [1] -1.197362
cdf(X, 4L)
#> [1] 0.9672065
quantile(X, 0.7)
#> [1] 3
cdf(X, quantile(X, 0.7))
#> [1] 0.8791261
quantile(X, cdf(X, 7))
#> [1] 7