quantile()
is the inverse of cdf()
.
Usage
# S3 method for class 'Exponential'
quantile(x, probs, drop = TRUE, elementwise = NULL, ...)
Arguments
- x
An
Exponential
object created by a call toExponential()
.- probs
A vector of probabilities.
- drop
logical. Should the result be simplified to a vector if possible?
- elementwise
logical. Should each distribution in
x
be evaluated at all elements ofprobs
(elementwise = FALSE
, yielding a matrix)? Or, ifx
andprobs
have the same length, should the evaluation be done element by element (elementwise = TRUE
, yielding a vector)? The default ofNULL
means thatelementwise = TRUE
is used if the lengths match and otherwiseelementwise = FALSE
is used.- ...
Arguments to be passed to
qexp
. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.
Value
In case of a single distribution object, either a numeric
vector of length probs
(if drop = TRUE
, default) or a matrix
with
length(probs)
columns (if drop = FALSE
). In case of a vectorized
distribution object, a matrix with length(probs)
columns containing all
possible combinations.
Examples
set.seed(27)
X <- Exponential(5)
X
#> [1] "Exponential(rate = 5)"
mean(X)
#> [1] 0.2
variance(X)
#> [1] 25
skewness(X)
#> [1] 2
kurtosis(X)
#> [1] 6
random(X, 10)
#> [1] 0.01161126 0.28730930 1.15993941 0.29660927 0.38431337 0.04643808
#> [7] 0.06969554 0.10900366 0.50608948 0.03759968
pdf(X, 2)
#> [1] 0.0002269996
log_pdf(X, 2)
#> [1] -8.390562
cdf(X, 4)
#> [1] 1
quantile(X, 0.7)
#> [1] 0.2407946
cdf(X, quantile(X, 0.7))
#> [1] 0.7
quantile(X, cdf(X, 7))
#> [1] 6.989008