Evaluate the cumulative distribution function of a GP distribution
Source:R/GeneralisedPareto.R
cdf.GP.Rd
Evaluate the cumulative distribution function of a GP distribution
Usage
# S3 method for class 'GP'
cdf(d, x, drop = TRUE, elementwise = NULL, ...)
Arguments
- d
A
GP
object created by a call toGP()
.- x
A vector of elements whose cumulative probabilities you would like to determine given the distribution
d
.- drop
logical. Should the result be simplified to a vector if possible?
- elementwise
logical. Should each distribution in
d
be evaluated at all elements ofx
(elementwise = FALSE
, yielding a matrix)? Or, ifd
andx
have the same length, should the evaluation be done element by element (elementwise = TRUE
, yielding a vector)? The default ofNULL
means thatelementwise = TRUE
is used if the lengths match and otherwiseelementwise = FALSE
is used.- ...
Arguments to be passed to
pgp
. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.
Value
In case of a single distribution object, either a numeric
vector of length probs
(if drop = TRUE
, default) or a matrix
with
length(x)
columns (if drop = FALSE
). In case of a vectorized distribution
object, a matrix with length(x)
columns containing all possible combinations.
Examples
set.seed(27)
X <- GP(0, 2, 0.1)
X
#> [1] "GP(mu = 0, sigma = 2, xi = 0.1)"
random(X, 10)
#> [1] 8.571201574 0.175715851 4.600737645 0.814822940 0.509138521 1.053986338
#> [7] 0.151089620 0.004907082 0.297083889 0.430734122
pdf(X, 0.7)
#> [1] 0.3424729
log_pdf(X, 0.7)
#> [1] -1.071563
cdf(X, 0.7)
#> [1] 0.2910812
quantile(X, 0.7)
#> [1] 2.558897
cdf(X, quantile(X, 0.7))
#> [1] 0.7
quantile(X, cdf(X, 0.7))
#> [1] 0.7