Evaluate the probability mass function of an RevWeibull distribution
Source:R/ReversedWeibull.R
pdf.RevWeibull.Rd
Evaluate the probability mass function of an RevWeibull distribution
Arguments
- d
A
RevWeibull
object created by a call toRevWeibull()
.- x
A vector of elements whose probabilities you would like to determine given the distribution
d
.- drop
logical. Should the result be simplified to a vector if possible?
- elementwise
logical. Should each distribution in
d
be evaluated at all elements ofx
(elementwise = FALSE
, yielding a matrix)? Or, ifd
andx
have the same length, should the evaluation be done element by element (elementwise = TRUE
, yielding a vector)? The default ofNULL
means thatelementwise = TRUE
is used if the lengths match and otherwiseelementwise = FALSE
is used.- ...
Arguments to be passed to
dgev
. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.
Value
In case of a single distribution object, either a numeric
vector of length probs
(if drop = TRUE
, default) or a matrix
with
length(x)
columns (if drop = FALSE
). In case of a vectorized distribution
object, a matrix with length(x)
columns containing all possible combinations.
Examples
set.seed(27)
X <- RevWeibull(1, 2)
X
#> [1] "RevWeibull(location = 1, scale = 2, shape = 1)"
random(X, 10)
#> [1] 0.9426871 -3.9596589 0.7303525 -1.2219891 -2.0076752 -0.8243573
#> [7] -4.2483783 -11.0231439 -2.9741769 -2.3014673
pdf(X, 0.7)
#> [1] 0.430354
log_pdf(X, 0.7)
#> [1] -0.8431472
cdf(X, 0.7)
#> [1] 0.860708
quantile(X, 0.7)
#> [1] 0.2866501
cdf(X, quantile(X, 0.7))
#> [1] 0.7
quantile(X, cdf(X, 0.7))
#> [1] 0.7