Skip to contents

Evaluate the probability mass function of a PoissonBinomial distribution

Usage

# S3 method for class 'PoissonBinomial'
pdf(d, x, drop = TRUE, elementwise = NULL, log = FALSE, verbose = TRUE, ...)

# S3 method for class 'PoissonBinomial'
log_pdf(d, x, drop = TRUE, elementwise = NULL, ...)

Arguments

d

A PoissonBinomial object created by a call to PoissonBinomial().

x

A vector of elements whose probabilities you would like to determine given the distribution d.

drop

logical. Should the result be simplified to a vector if possible?

elementwise

logical. Should each distribution in d be evaluated at all elements of x (elementwise = FALSE, yielding a matrix)? Or, if d and x have the same length, should the evaluation be done element by element (elementwise = TRUE, yielding a vector)? The default of NULL means that elementwise = TRUE is used if the lengths match and otherwise elementwise = FALSE is used.

log, ...

Arguments to be passed to dpbinom or pnorm, respectively.

verbose

logical. Should a warning be issued if the normal approximation is applied because the PoissonBinomial package is not installed?

Value

In case of a single distribution object, either a numeric vector of length probs (if drop = TRUE, default) or a matrix with length(x) columns (if drop = FALSE). In case of a vectorized distribution object, a matrix with length(x) columns containing all possible combinations.

Examples


set.seed(27)

X <- PoissonBinomial(0.5, 0.3, 0.8)
X
#> [1] "PoissonBinomial(p1 = 0.5, p2 = 0.3, p3 = 0.8)"

mean(X)
#> [1] 1.6
variance(X)
#> [1] 0.62
skewness(X)
#> [1] -0.02458067
kurtosis(X)
#> [1] -0.4505723

random(X, 10)
#>  [1] 0 2 3 2 2 2 2 2 2 2

pdf(X, 2)
#> [1] 0.43
log_pdf(X, 2)
#> [1] -0.8439701

cdf(X, 2)
#> [1] 0.88
quantile(X, 0.8)
#> [1] 2

cdf(X, quantile(X, 0.8))
#> [1] 0.88
quantile(X, cdf(X, 2))
#> [1] 2

## equivalent definitions of four Poisson binomial distributions
## each summing up three Bernoulli probabilities
p <- cbind(
  p1 = c(0.1, 0.2, 0.1, 0.2),
  p2 = c(0.5, 0.5, 0.5, 0.5),
  p3 = c(0.8, 0.7, 0.9, 0.8))
PoissonBinomial(p)
#> [1] "PoissonBinomial(p1 = 0.1, p2 = 0.5, p3 = 0.8)"
#> [2] "PoissonBinomial(p1 = 0.2, p2 = 0.5, p3 = 0.7)"
#> [3] "PoissonBinomial(p1 = 0.1, p2 = 0.5, p3 = 0.9)"
#> [4] "PoissonBinomial(p1 = 0.2, p2 = 0.5, p3 = 0.8)"
PoissonBinomial(p[, 1], p[, 2], p[, 3])
#> [1] "PoissonBinomial(p1 = 0.1, p2 = 0.5, p3 = 0.8)"
#> [2] "PoissonBinomial(p1 = 0.2, p2 = 0.5, p3 = 0.7)"
#> [3] "PoissonBinomial(p1 = 0.1, p2 = 0.5, p3 = 0.9)"
#> [4] "PoissonBinomial(p1 = 0.2, p2 = 0.5, p3 = 0.8)"
PoissonBinomial(p[, 1:2], p[, 3])
#> [1] "PoissonBinomial(p1 = 0.1, p2 = 0.5, p3 = 0.8)"
#> [2] "PoissonBinomial(p1 = 0.2, p2 = 0.5, p3 = 0.7)"
#> [3] "PoissonBinomial(p1 = 0.1, p2 = 0.5, p3 = 0.9)"
#> [4] "PoissonBinomial(p1 = 0.2, p2 = 0.5, p3 = 0.8)"