Package index
-
cdf() - Evaluate the cumulative distribution function of a probability distribution
-
random()simulate(<distribution>) - Draw a random sample from a probability distribution
-
variance()skewness()kurtosis() - Compute the moments of a probability distribution
-
support() - Return the support of a distribution
-
is_discrete()is_continuous() - Determine whether a distribution is discrete or continuous
-
suff_stat() - Compute the sufficient statistics of a distribution from data
-
fit_mle() - Fit a distribution to data
-
is_distribution() - Is an object a distribution?
-
prodist() - Extracting fitted or predicted probability distributions from models
-
simulate(<default>) - Simulate responses from fitted model objects
-
apply_dpqr()make_support()make_positive_integer() - Utilities for
distributions3objects
-
log_likelihood()likelihood() - Compute the (log-)likelihood of a probability distribution given data
-
FIFA2018 - Goals scored in all 2018 FIFA World Cup matches
-
plot(<distribution>) - Plot the p.m.f, p.d.f or c.d.f. of a univariate distribution
-
plot_cdf() - Plot the CDF of a distribution
-
plot_pdf() - Plot the PDF of a distribution
-
stat_auc()geom_auc() - Fill out area under the curve for a plotted PDF
-
Bernoulli() - Create a Bernoulli distribution
-
cdf(<Bernoulli>) - Evaluate the cumulative distribution function of a Bernoulli distribution
-
fit_mle(<Bernoulli>) - Fit a Bernoulli distribution to data
-
pdf(<Bernoulli>)log_pdf(<Bernoulli>) - Evaluate the probability mass function of a Bernoulli distribution
-
quantile(<Bernoulli>) - Determine quantiles of a Bernoulli distribution
-
random(<Bernoulli>) - Draw a random sample from a Bernoulli distribution
-
suff_stat(<Bernoulli>) - Compute the sufficient statistics for a Bernoulli distribution from data
-
support(<Bernoulli>) - Return the support of the Bernoulli distribution
-
Beta() - Create a Beta distribution
-
cdf(<Beta>) - Evaluate the cumulative distribution function of a Beta distribution
-
pdf(<Beta>)log_pdf(<Beta>) - Evaluate the probability mass function of a Beta distribution
-
quantile(<Beta>) - Determine quantiles of a Beta distribution
-
random(<Beta>) - Draw a random sample from a Beta distribution
-
support(<Beta>) - Return the support of the Beta distribution
-
Binomial() - Create a Binomial distribution
-
cdf(<Binomial>) - Evaluate the cumulative distribution function of a Binomial distribution
-
fit_mle(<Binomial>) - Fit a Binomial distribution to data
-
pdf(<Binomial>)log_pdf(<Binomial>) - Evaluate the probability mass function of a Binomial distribution
-
quantile(<Binomial>) - Determine quantiles of a Binomial distribution
-
random(<Binomial>) - Draw a random sample from a Binomial distribution
-
suff_stat(<Binomial>) - Compute the sufficient statistics for the Binomial distribution from data
-
support(<Binomial>) - Return the support of the Binomial distribution
-
Categorical() - Create a Categorical distribution
-
cdf(<Categorical>) - Evaluate the cumulative distribution function of a Categorical distribution
-
pdf(<Categorical>)log_pdf(<Categorical>) - Evaluate the probability mass function of a Categorical discrete distribution
-
quantile(<Categorical>) - Determine quantiles of a Categorical discrete distribution
-
random(<Categorical>) - Draw a random sample from a Categorical distribution
-
Cauchy() - Create a Cauchy distribution
-
cdf(<Cauchy>) - Evaluate the cumulative distribution function of a Cauchy distribution
-
pdf(<Cauchy>)log_pdf(<Cauchy>) - Evaluate the probability mass function of a Cauchy distribution
-
quantile(<Cauchy>) - Determine quantiles of a Cauchy distribution
-
random(<Cauchy>) - Draw a random sample from a Cauchy distribution
-
support(<Cauchy>) - Return the support of the Cauchy distribution
-
ChiSquare() - Create a Chi-Square distribution
-
cdf(<ChiSquare>) - Evaluate the cumulative distribution function of a chi square distribution
-
pdf(<ChiSquare>)log_pdf(<ChiSquare>) - Evaluate the probability mass function of a chi square distribution
-
quantile(<ChiSquare>) - Determine quantiles of a chi square distribution
-
random(<ChiSquare>) - Draw a random sample from a chi square distribution
-
support(<ChiSquare>) - Return the support of the ChiSquare distribution
-
Erlang() - Create an Erlang distribution
-
cdf(<Erlang>) - Evaluate the cumulative distribution function of an Erlang distribution
-
pdf(<Erlang>)log_pdf(<Erlang>) - Evaluate the probability mass function of an Erlang distribution
-
quantile(<Erlang>) - Determine quantiles of an Erlang distribution
-
random(<Erlang>) - Draw a random sample from an Erlang distribution
-
support(<Erlang>) - Return the support of the Erlang distribution
-
Exponential() - Create an Exponential distribution
-
cdf(<Exponential>) - Evaluate the cumulative distribution function of an Exponential distribution
-
fit_mle(<Exponential>) - Fit an Exponential distribution to data
-
pdf(<Exponential>)log_pdf(<Exponential>) - Evaluate the probability density function of an Exponential distribution
-
quantile(<Exponential>) - Determine quantiles of an Exponential distribution
-
random(<Exponential>) - Draw a random sample from an Exponential distribution
-
suff_stat(<Exponential>) - Compute the sufficient statistics of an Exponential distribution from data
-
support(<Exponential>) - Return the support of the Exponential distribution
-
FisherF() - Create an F distribution
-
cdf(<FisherF>) - Evaluate the cumulative distribution function of an F distribution
-
pdf(<FisherF>)log_pdf(<FisherF>) - Evaluate the probability mass function of an F distribution
-
quantile(<FisherF>) - Determine quantiles of an F distribution
-
random(<FisherF>) - Draw a random sample from an F distribution
-
support(<FisherF>) - Return the support of the FisherF distribution
-
Frechet() - Create a Frechet distribution
-
cdf(<Frechet>) - Evaluate the cumulative distribution function of a Frechet distribution
-
pdf(<Frechet>)log_pdf(<Frechet>) - Evaluate the probability mass function of a Frechet distribution
-
quantile(<Frechet>) - Determine quantiles of a Frechet distribution
-
random(<Frechet>) - Draw a random sample from a Frechet distribution
-
support(<Frechet>) - Return the support of the Frechet distribution
-
GEV() - Create a Generalised Extreme Value (GEV) distribution
-
cdf(<GEV>) - Evaluate the cumulative distribution function of a GEV distribution
-
pdf(<GEV>)log_pdf(<GEV>) - Evaluate the probability mass function of a GEV distribution
-
quantile(<GEV>) - Determine quantiles of a GEV distribution
-
random(<GEV>) - Draw a random sample from a GEV distribution
-
support(<GEV>) - Return the support of a GEV distribution
-
GP() - Create a Generalised Pareto (GP) distribution
-
cdf(<GP>) - Evaluate the cumulative distribution function of a GP distribution
-
pdf(<GP>)log_pdf(<GP>) - Evaluate the probability mass function of a GP distribution
-
quantile(<GP>) - Determine quantiles of a GP distribution
-
random(<GP>) - Draw a random sample from a GP distribution
-
support(<GP>) - Return the support of the GP distribution
-
Gamma() - Create a Gamma distribution
-
cdf(<Gamma>) - Evaluate the cumulative distribution function of a Gamma distribution
-
fit_mle(<Gamma>) - Fit a Gamma distribution to data
-
pdf(<Gamma>)log_pdf(<Gamma>) - Evaluate the probability mass function of a Gamma distribution
-
quantile(<Gamma>) - Determine quantiles of a Gamma distribution
-
random(<Gamma>) - Draw a random sample from a Gamma distribution
-
suff_stat(<Gamma>) - Compute the sufficient statistics for a Gamma distribution from data
-
support(<Gamma>) - Return the support of the Gamma distribution
-
Geometric() - Create a Geometric distribution
-
cdf(<Geometric>) - Evaluate the cumulative distribution function of a Geometric distribution
-
fit_mle(<Geometric>) - Fit a Geometric distribution to data
-
pdf(<Geometric>)log_pdf(<Geometric>) - Evaluate the probability mass function of a Geometric distribution
-
quantile(<Geometric>) - Determine quantiles of a Geometric distribution
-
random(<Geometric>) - Draw a random sample from a Geometric distribution
-
suff_stat(<Geometric>) - Compute the sufficient statistics for the Geometric distribution from data
-
support(<Geometric>) - Return the support of the Geometric distribution
-
Gumbel() - Create a Gumbel distribution
-
cdf(<Gumbel>) - Evaluate the cumulative distribution function of a Gumbel distribution
-
pdf(<Gumbel>)log_pdf(<Gumbel>) - Evaluate the probability mass function of a Gumbel distribution
-
quantile(<Gumbel>) - Determine quantiles of a Gumbel distribution
-
random(<Gumbel>) - Draw a random sample from a Gumbel distribution
-
support(<Gumbel>) - Return the support of the Gumbel distribution
-
dhnbinom()phnbinom()qhnbinom()rhnbinom() - The hurdle negative binomial distribution
-
HurdleNegativeBinomial() - Create a hurdle negative binomial distribution
-
cdf(<HurdleNegativeBinomial>) - Evaluate the cumulative distribution function of a hurdle negative binomial distribution
-
pdf(<HurdleNegativeBinomial>)log_pdf(<HurdleNegativeBinomial>) - Evaluate the probability mass function of a hurdle negative binomial distribution
-
quantile(<HurdleNegativeBinomial>) - Determine quantiles of a hurdle negative binomial distribution
-
random(<HurdleNegativeBinomial>) - Draw a random sample from a hurdle negative binomial distribution
-
support(<HurdleNegativeBinomial>) - Return the support of the hurdle negative binomial distribution
-
HurdlePoisson() - Create a hurdle Poisson distribution
-
cdf(<HurdlePoisson>) - Evaluate the cumulative distribution function of a hurdle Poisson distribution
-
pdf(<HurdlePoisson>)log_pdf(<HurdlePoisson>) - Evaluate the probability mass function of a hurdle Poisson distribution
-
quantile(<HurdlePoisson>) - Determine quantiles of a hurdle Poisson distribution
-
random(<HurdlePoisson>) - Draw a random sample from a hurdle Poisson distribution
-
support(<HurdlePoisson>) - Return the support of the hurdle Poisson distribution
-
HyperGeometric() - Create a HyperGeometric distribution
-
cdf(<HyperGeometric>) - Evaluate the cumulative distribution function of a HyperGeometric distribution
-
pdf(<HyperGeometric>)log_pdf(<HyperGeometric>) - Evaluate the probability mass function of a HyperGeometric distribution
-
quantile(<HyperGeometric>) - Determine quantiles of a HyperGeometric distribution
-
random(<HyperGeometric>) - Draw a random sample from a HyperGeometric distribution
-
support(<HyperGeometric>) - Return the support of the HyperGeometric distribution
-
LogNormal() - Create a LogNormal distribution
-
cdf(<LogNormal>) - Evaluate the cumulative distribution function of a LogNormal distribution
-
fit_mle(<LogNormal>) - Fit a Log Normal distribution to data
-
pdf(<LogNormal>)log_pdf(<LogNormal>) - Evaluate the probability mass function of a LogNormal distribution
-
quantile(<LogNormal>) - Determine quantiles of a LogNormal distribution
-
random(<LogNormal>) - Draw a random sample from a LogNormal distribution
-
suff_stat(<LogNormal>) - Compute the sufficient statistics for a Log-normal distribution from data
-
support(<LogNormal>) - Return the support of the LogNormal distribution
-
Logistic() - Create a Logistic distribution
-
cdf(<Logistic>) - Evaluate the cumulative distribution function of a Logistic distribution
-
pdf(<Logistic>)log_pdf(<Logistic>) - Evaluate the probability mass function of a Logistic distribution
-
quantile(<Logistic>) - Determine quantiles of a Logistic distribution
-
random(<Logistic>) - Draw a random sample from a Logistic distribution
-
support(<Logistic>) - Return the support of the Logistic distribution
-
Multinomial() - Create a Multinomial distribution
-
pdf(<Multinomial>)log_pdf(<Multinomial>) - Evaluate the probability mass function of a Multinomial distribution
-
random(<Multinomial>) - Draw a random sample from a Multinomial distribution
-
NegativeBinomial() - Create a negative binomial distribution
-
cdf(<NegativeBinomial>) - Evaluate the cumulative distribution function of a negative binomial distribution
-
pdf(<NegativeBinomial>)log_pdf(<NegativeBinomial>) - Evaluate the probability mass function of a NegativeBinomial distribution
-
quantile(<NegativeBinomial>) - Determine quantiles of a NegativeBinomial distribution
-
random(<NegativeBinomial>) - Draw a random sample from a negative binomial distribution
-
support(<NegativeBinomial>) - Return the support of the NegativeBinomial distribution
-
Normal() - Create a Normal distribution
-
cdf(<Normal>) - Evaluate the cumulative distribution function of a Normal distribution
-
fit_mle(<Normal>) - Fit a Normal distribution to data
-
pdf(<Normal>)log_pdf(<Normal>) - Evaluate the probability mass function of a Normal distribution
-
quantile(<Normal>) - Determine quantiles of a Normal distribution
-
random(<Normal>) - Draw a random sample from a Normal distribution
-
suff_stat(<Normal>) - Compute the sufficient statistics for a Normal distribution from data
-
support(<Normal>) - Return the support of the Normal distribution
-
Poisson() - Create a Poisson distribution
-
cdf(<Poisson>) - Evaluate the cumulative distribution function of a Poisson distribution
-
fit_mle(<Poisson>) - Fit an Poisson distribution to data
-
pdf(<Poisson>)log_pdf(<Poisson>) - Evaluate the probability mass function of a Poisson distribution
-
quantile(<Poisson>) - Determine quantiles of a Poisson distribution
-
random(<Poisson>) - Draw a random sample from a Poisson distribution
-
suff_stat(<Poisson>) - Compute the sufficient statistics of an Poisson distribution from data
-
support(<Poisson>) - Return the support of the Poisson distribution
-
PoissonBinomial() - Create a Poisson binomial distribution
-
cdf(<PoissonBinomial>) - Evaluate the cumulative distribution function of a PoissonBinomial distribution
-
pdf(<PoissonBinomial>)log_pdf(<PoissonBinomial>) - Evaluate the probability mass function of a PoissonBinomial distribution
-
quantile(<PoissonBinomial>) - Determine quantiles of a PoissonBinomial distribution
-
random(<PoissonBinomial>) - Draw a random sample from a PoissonBinomial distribution
-
support(<PoissonBinomial>) - Return the support of the PoissonBinomial distribution
-
RevWeibull() - Create a reversed Weibull distribution
-
cdf(<RevWeibull>) - Evaluate the cumulative distribution function of an RevWeibull distribution
-
pdf(<RevWeibull>)log_pdf(<RevWeibull>) - Evaluate the probability mass function of an RevWeibull distribution
-
quantile(<RevWeibull>) - Determine quantiles of a RevWeibull distribution
-
random(<RevWeibull>) - Draw a random sample from an RevWeibull distribution
-
support(<RevWeibull>) - Return the support of the RevWeibull distribution
-
StudentsT() - Create a Student's T distribution
-
cdf(<StudentsT>) - Evaluate the cumulative distribution function of a StudentsT distribution
-
pdf(<StudentsT>)log_pdf(<StudentsT>) - Evaluate the probability mass function of a StudentsT distribution
-
quantile(<StudentsT>) - Determine quantiles of a StudentsT distribution
-
random(<StudentsT>) - Draw a random sample from a StudentsT distribution
-
support(<StudentsT>) - Return the support of the StudentsT distribution
-
Tukey() - Create a Tukey distribution
-
cdf(<Tukey>) - Evaluate the cumulative distribution function of a Tukey distribution
-
quantile(<Tukey>) - Determine quantiles of a Tukey distribution
-
random(<Tukey>) - Draw a random sample from a Tukey distribution
-
support(<Tukey>) - Return the support of the Tukey distribution
-
Uniform() - Create a Continuous Uniform distribution
-
cdf(<Uniform>) - Evaluate the cumulative distribution function of a continuous Uniform distribution
-
pdf(<Uniform>)log_pdf(<Uniform>) - Evaluate the probability mass function of a continuous Uniform distribution
-
quantile(<Uniform>) - Determine quantiles of a continuous Uniform distribution
-
random(<Uniform>) - Draw a random sample from a continuous Uniform distribution
-
support(<Uniform>) - Return the support of the Uniform distribution
-
Weibull() - Create a Weibull distribution
-
cdf(<Weibull>) - Evaluate the cumulative distribution function of a Weibull distribution
-
pdf(<Weibull>)log_pdf(<Weibull>) - Evaluate the probability mass function of a Weibull distribution
-
quantile(<Weibull>) - Determine quantiles of a Weibull distribution
-
random(<Weibull>) - Draw a random sample from a Weibull distribution
-
support(<Weibull>) - Return the support of the Weibull distribution
-
dzinbinom()pzinbinom()qzinbinom()rzinbinom() - The zero-inflated negative binomial distribution
-
ZINegativeBinomial() - Create a zero-inflated negative binomial distribution
-
cdf(<ZINegativeBinomial>) - Evaluate the cumulative distribution function of a zero-inflated negative binomial distribution
-
pdf(<ZINegativeBinomial>)log_pdf(<ZINegativeBinomial>) - Evaluate the probability mass function of a zero-inflated negative binomial distribution
-
quantile(<ZINegativeBinomial>) - Determine quantiles of a zero-inflated negative binomial distribution
-
random(<ZINegativeBinomial>) - Draw a random sample from a zero-inflated negative binomial distribution
-
support(<ZINegativeBinomial>) - Return the support of the zero-inflated negative binomial distribution
-
ZIPoisson() - Create a zero-inflated Poisson distribution
-
cdf(<ZIPoisson>) - Evaluate the cumulative distribution function of a zero-inflated Poisson distribution
-
pdf(<ZIPoisson>)log_pdf(<ZIPoisson>) - Evaluate the probability mass function of a zero-inflated Poisson distribution
-
quantile(<ZIPoisson>) - Determine quantiles of a zero-inflated Poisson distribution
-
random(<ZIPoisson>) - Draw a random sample from a zero-inflated Poisson distribution
-
support(<ZIPoisson>) - Return the support of the zero-inflated Poisson distribution
-
dztnbinom()pztnbinom()qztnbinom()rztnbinom() - The zero-truncated negative binomial distribution
-
ZTNegativeBinomial() - Create a zero-truncated negative binomial distribution
-
cdf(<ZTNegativeBinomial>) - Evaluate the cumulative distribution function of a zero-truncated negative binomial distribution
-
pdf(<ZTNegativeBinomial>)log_pdf(<ZTNegativeBinomial>) - Evaluate the probability mass function of a zero-truncated negative binomial distribution
-
quantile(<ZTNegativeBinomial>) - Determine quantiles of a zero-truncated negative binomial distribution
-
random(<ZTNegativeBinomial>) - Draw a random sample from a zero-truncated negative binomial distribution
-
support(<ZTNegativeBinomial>) - Return the support of the zero-truncated negative binomial distribution
-
ZTPoisson() - Create a zero-truncated Poisson distribution
-
cdf(<ZTPoisson>) - Evaluate the cumulative distribution function of a zero-truncated Poisson distribution
-
pdf(<ZTPoisson>)log_pdf(<ZTPoisson>) - Evaluate the probability mass function of a zero-truncated Poisson distribution
-
quantile(<ZTPoisson>) - Determine quantiles of a zero-truncated Poisson distribution
-
random(<ZTPoisson>) - Draw a random sample from a zero-truncated Poisson distribution
-
support(<ZTPoisson>) - Return the support of the zero-truncated Poisson distribution