The Erlang distribution is a two-parameter family of continuous probability distributions with support \(x \in [0,\infty)\). The two parameters are a positive integer shape parameter \(k\) and a positive real rate parameter \(\lambda\). The Erlang distribution with shape parameter \(k = 1\) simplifies to the exponential distribution, and it is a special case of the gamma distribution. It corresponds to a sum of \(k\) independent exponential variables with mean \(1 / \lambda\) each.
Examples
set.seed(27)
X <- Erlang(5, 2)
X
#> [1] "Erlang(k = 5, lambda = 2)"
random(X, 10)
#> [1] 4.727510 3.628168 1.512156 4.771854 2.257310 3.645070 5.083710 2.509344
#> [9] 1.093361 2.021506
pdf(X, 2)
#> [1] 0.3907336
log_pdf(X, 2)
#> [1] -0.9397292
cdf(X, 4)
#> [1] 0.9003676
quantile(X, 0.7)
#> [1] 2.945181
cdf(X, quantile(X, 0.7))
#> [1] 0.7
quantile(X, cdf(X, 7))
#> [1] 7