A random variable created by exponentiating a Normal()
distribution. Taking the log of LogNormal data returns in
Normal()
data.
Details
We recommend reading this documentation on https://alexpghayes.github.io/distributions3/, where the math will render with additional detail and much greater clarity.
In the following, let \(X\) be a LogNormal random variable with
success probability p
= \(p\).
Support: \(R^+\)
Mean: \(\exp(\mu + \sigma^2/2)\)
Variance: \([\exp(\sigma^2)-1]\exp(2\mu+\sigma^2)\)
Probability density function (p.d.f):
$$ f(x) = \frac{1}{x \sigma \sqrt{2 \pi}} \exp \left(-\frac{(\log x - \mu)^2}{2 \sigma^2} \right) $$
Cumulative distribution function (c.d.f):
$$F(x) = \frac{1}{2} + \frac{1}{2\sqrt{pi}}\int_{-x}^x e^{-t^2} dt$$
Moment generating function (m.g.f): Undefined.
Examples
set.seed(27)
X <- LogNormal(0.3, 2)
X
#> [1] "LogNormal(log_mu = 0.3, log_sigma = 2)"
random(X, 10)
#> [1] 61.21089083 13.32648994 0.29256703 0.07317767 0.15153514 2.43630473
#> [7] 1.36857751 13.66478070 96.47421603 2.17208867
pdf(X, 2)
#> [1] 0.09782712
log_pdf(X, 2)
#> [1] -2.324553
cdf(X, 4)
#> [1] 0.7064858
quantile(X, 0.7)
#> [1] 3.852803