Poisson distributions are frequently used to model counts.
Details
We recommend reading this documentation on https://alexpghayes.github.io/distributions3/, where the math will render with additional detail.
In the following, let \(X\) be a Poisson random variable with parameter
lambda
= \(\lambda\).
Support: \(\{0, 1, 2, 3, ...\}\)
Mean: \(\lambda\)
Variance: \(\lambda\)
Probability mass function (p.m.f):
$$ P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} $$
Cumulative distribution function (c.d.f):
$$ P(X \le k) = e^{-\lambda} \sum_{i = 0}^{\lfloor k \rfloor} \frac{\lambda^i}{i!} $$
Moment generating function (m.g.f):
$$ E(e^{tX}) = e^{\lambda (e^t - 1)} $$
See also
Other discrete distributions:
Bernoulli()
,
Binomial()
,
Categorical()
,
Geometric()
,
HurdleNegativeBinomial()
,
HurdlePoisson()
,
HyperGeometric()
,
Multinomial()
,
NegativeBinomial()
,
PoissonBinomial()
,
ZINegativeBinomial()
,
ZIPoisson()
,
ZTNegativeBinomial()
,
ZTPoisson()