Poisson distributions are frequently used to model counts.
Details
We recommend reading this documentation on https://alexpghayes.github.io/distributions3/, where the math will render with additional detail.
In the following, let \(X\) be a Poisson random variable with parameter
lambda = \(\lambda\).
Support: \(\{0, 1, 2, 3, ...\}\)
Mean: \(\lambda\)
Variance: \(\lambda\)
Probability mass function (p.m.f):
$$ P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} $$
Cumulative distribution function (c.d.f):
$$ P(X \le k) = e^{-\lambda} \sum_{i = 0}^{\lfloor k \rfloor} \frac{\lambda^i}{i!} $$
Moment generating function (m.g.f):
$$ E(e^{tX}) = e^{\lambda (e^t - 1)} $$
See also
Other discrete distributions:
Bernoulli(),
Binomial(),
Categorical(),
Geometric(),
HurdleNegativeBinomial(),
HurdlePoisson(),
HyperGeometric(),
Multinomial(),
NegativeBinomial(),
PoissonBinomial(),
ZINegativeBinomial(),
ZIPoisson(),
ZTNegativeBinomial(),
ZTPoisson()