Bernoulli distributions are used to represent events like coin flips
when there is single trial that is either successful or unsuccessful.
The Bernoulli distribution is a special case of the `Binomial()`

distribution with `n = 1`

.

Bernoulli(p = 0.5)

p | The success probability for the distribution. |
---|

A `Bernoulli`

object.

We recommend reading this documentation on https://alexpghayes.github.io/distributions3, where the math will render with additional detail.

In the following, let \(X\) be a Bernoulli random variable with parameter
`p`

= \(p\). Some textbooks also define \(q = 1 - p\), or use
\(\pi\) instead of \(p\).

The Bernoulli probability distribution is widely used to model binary variables, such as 'failure' and 'success'. The most typical example is the flip of a coin, when \(p\) is thought as the probability of flipping a head, and \(q = 1 - p\) is the probability of flipping a tail.

**Support**: \(\{0, 1\}\)

**Mean**: \(p\)

**Variance**: \(p \cdot (1 - p) = p \cdot q\)

**Probability mass function (p.m.f)**:

$$ P(X = x) = p^x (1 - p)^{1-x} = p^x q^{1-x} $$

**Cumulative distribution function (c.d.f)**:

$$ P(X \le x) = \left \{ \begin{array}{ll} 0 & x < 0 \\ 1 - p & 0 \leq x < 1 \\ 1 & x \geq 1 \end{array} \right. $$

**Moment generating function (m.g.f)**:

$$ E(e^{tX}) = (1 - p) + p e^t $$

Other discrete distributions: `Binomial`

,
`Categorical`

, `Geometric`

,
`HyperGeometric`

, `Multinomial`

,
`NegativeBinomial`

, `Poisson`

#> Bernoulli distribution (p = 0.7)#> [1] 0 1 0 1 1 1 1 1 1 1#> [1] 0.7#> [1] -0.3566749#> [1] 0.3#> [1] 1#> [1] 1#> [1] 0